Submit Manuscript  

Article Details

A Pilot Study to Assess Adenosine 5’-triphosphate Metabolism in Red Blood Cells as a Drug Target for Potential Cardiovascular Protection

[ Vol. 15 , Issue. 3 ]


Pollen K.F. Yeung, Jodi Tinkel and Dena Seeto   Pages 224 - 232 ( 9 )


Objective: To study the effect of exercise preconditioning on adenosine 5’triphosphate (ATP) metabolism in red blood cells and cardiovascular protection against injury induced by isoproterenol in vivo.

Methods: Male Sprague Dawley rats (SDR) were each exercised on a treadmill for 15 minutes at 10 m/min and 10% grade (n = 7) (LowEx), or 14 m/min and 22% grade (n = 8) (VigEx). Two hours after the exercise, each rat received a single dose of isoproterenol (30 mg/kg) by subcutaneous (sc) injection. Two separate groups of SDR were used as control: One received no exercise (n = 10) (NoEx) and the other received no exercise and no isoproterenol (n = 11) (NoIso). Serial blood samples were collected over 5 hours for measurement of ATP and its catabolites by a validated HPLC. Hemodynamic recording was collected continuously for the duration of the experiment. Data were analysed using ANOVA and t-tests and difference considered significant at p < 0.05.

Results: Exercise pre-conditioning (both LowEx and VigEx) reduced mortality after isoproterenol from 50% to < 30% (p > 0.05). It attenuated the rebound in blood pressure significantly (p < 0.05 between NoEx vs VigEx), attenuated the increase of RBC adenosine 5’-monophosphate (AMP) concentrations induced by isoproterenol, and also decreased the breakdown of ATP to AMP in the RBC ( p < 0.05 vs NoEx).

Conclusion: Exercise pre-conditioning decreased the blood pressure rebound and also breakdown of ATP in RBC after isoproterenol which may be exploited further as a drug target for cardiovascular protection and prevention.


ATP, cardiovascular protection, exercise preconditioning, hemodynamic, RBC, target, toxicity, rats.


College of Pharmacy and Department of Medicine, Dalhousie University, Halifax, NS, Canada B3H 4R2.

Graphical Abstract:

Read Full-Text article